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Introduction

We congratulate the authors (henceforth, GDCCQF) on their contribution to the lit-
erature on model selection with missing data. Our discussion was inspired by the re-
quirement to estimate the joint distribution of the covariates, f(X1, . . . , Xk|ν), which
is at the core of their method. The problem of estimating a joint distribution is central
to modern statistics and its positive resolution has been known to impact other influ-
ential methods such as the knockoff method [1], the study of imputation efficiency in
regression models [11], or sample surveys [3].

Estimation of the joint distribution of covariates

Although GDCCQF use, for simplicity, a multivariate Gaussian to generate the covari-
ates and also to model their joint distribution, f(X1, . . . , Xk|ν), real data can depart
from such an ideal setup in several ways. First, some covariates may have marginal
distributions that are not Gaussian or even continuous, thus falsifying the multivari-
ate Gaussian assumption. Second, the type of dependence captured by the Gaussian
distribution may differ substantially from the dependence patterns exhibited by f . For
example, it is well known that the tail dependence coefficients are zero for multivariate
Gaussian distributions, but not so for other multivariate laws [see 8, and references
therein]. A general mathematical framework for such comparisons is provided by the
copula function which links the marginal and joint distributions of a multivariate vec-
tor [10, 5]. Furthermore, copulas have been increasingly used in the development of
statistical methods for multivariate-dependent data [e.g., 4, 2, 6, 12, 9]. These develop-
ments are accompanied by software packages [e.g., 7] or programs that make it easier
to implement copula-based techniques.

A small numerical study

A copula formulation allows us to study empirically how the performance of GDCCQF’s
variable selection procedure is impacted when the marginals and the dependence struc-
ture of f are misspecified. The analysis produced by GDCCQF’s programs assumes
that f is a multivariate Gaussian distribution which is equivalent to a Gaussian cop-
ula model in which the marginals are all Gaussian. We considered data under three
simulation scenarios that vary the copula and the marginals as follows:
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CG We used a multivariate Clayton copula in which the Kendall tau between each
pair of variables is 0.8, and all marginals are standard Gaussian. This copula
choice introduces a strong lower tail dependence, unlike the posited model, which
assumes that there is no tail dependence.

CL Same as CG but with marginal densities that are generalized Gaussian

g(x) ∝ exp(−|x|8), ∀x ∈ R

and thus have lighter tails than the posited model.

CH Same as CL but with marginal densities that are mixtures of a standard Gaussian
(weight is 0.2) and an Exponential with parameter 2,

g(x) = 0.2ϕ(x) + 1.6 exp(−2x)1{x≥0}(x), ∀x ∈ R,

where ϕ is the density of a standard normal, and 1{x≥0}(x) is equal to one if x ≥ 0
and is zero otherwise. This yields marginals with a heavier right tail than in the
posited model.

For all scenarios, each generated data set contained n = 300 observations, the number of
covariates under consideration was k = 10, with active covariates X1, X2, X6, X7 having
the corresponding regression coefficients, β1 = 1, β2 = 2, β6 = 1 and β7 = 2, and the
missing probability was set to p = 0.1 under a MCAR scheme. We followed GDCCQF to
produce nMC = 500 imputations. Each scenario was independently replicated R = 500
times. Table 1 presents the false negative (FN) and false positive (FP) rates for the
three simulation scenarios when the data are analyzed assuming a multivariate Gaussian
distribution. We note that the impact on the selection of active covariates seems to vary
according to the size of their effect and the missing patterns produced in each replicate.
Given that the error rates are not very high, we would need more replicates in order to
see similar FP rates for all non-active covariates.

Conclusion

The simulations suggest that misspecification of the dependence can alter the perfor-
mance of the method. Performance degradation is amplified when marginals are also
misspecified. More work is required to understand if the difference in tail dependence
between the Clayton copula and the Gaussian copula is responsible for these errors, or
other copulas more similar to the Gaussian, such as a t copula, can also wreak havoc.
Model misspecification is a well-known issue in Bayesian analysis, but in this case it
can be realistically addressed by considering copula models to fit f . Our contribution
to this discussion is not meant to be a criticism of GDCCQF’s method, but is rather
aimed at stimulating the development of flexible estimation methods of multivariate
distributions when part of the data are missing. We thank GDCCQF for an inspiring
article that opens several directions for further study.
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Table 1: Error rates for each variable in the three scenarios. For the active covariates
shown in bold, the error rates represent the fraction of false negatives, while for the
remaining inactive covariates the error rates represent the fraction of false positives.

Scenario Covariate
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

CG 0 0 0.216 0 0.108 0.002 0 0.002 0.002 0
CL 0.120 0 0.11 0 0.11 0.548 0.01 0 0 0
CH 0.108 0 0.318 0.002 0.106 0.008 0 0.014 0.002 0.002
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